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Abstract

Long noncoding RNAs (lncRNAs) encompass short open reading frames (sORFs) that can

be translated into small peptides. Here, we investigated the encoding potential of lncRNA

LINC00665 in osteosarcoma (OS) cells. Bioinformatic analyses were utilized to predict the

lncRNAs with encoding potential in human U2OS cells. Protein expression was assessed

by an immunoblotting or immunofluorescence method. Cell viability was assessed by cell

counting Kit-8 (CCK-8). Cell proliferation was detected by 5-ethynyl-2’-deoxyuridine (EdU)

assay. Cell migration was gauged by transwell assay. The downstream effectors of the

short peptide were verified using qualitative proteome analysis after immunoprecipitation

(IP) experiments. The effect of the short peptide on protein interactions were confirmed by

Co-Immunoprecipitation (CoIP) assays. We found that lncRNA LINC00665 encoded an 18-

amino acid (aa)-long short peptide (named LINC00665_18aa). LINC00665_18aa sup-

pressed the viability, proliferation, and migration of human MNNG-HOS and U2OS OS cells

in vitro and diminished tumor growth in vivo. Mechanistically, LINC00665_18aa impaired

the transcriptional activity, nuclear localization, and phosphorylation of cAMP response ele-

ment-binding protein 1 (CREB1). Moreover, LINC00665_18aa weakened the interaction

between CREB1 and ribosomal protein S6 kinase A3 (RPS6KA3, RSK2). Additionally,

increased expression of CREB1 reversed the inhibitory effects of LINC00665_18aa on OS

cell proliferation and migration. Our findings show that the short peptide LINC00665_18aa

exerts a tumor-inhibitory function in OS, providing a new basis for cancer therapeutics

through the functions of the short peptides encoded by lncRNAs.

Introduction

Despite a rare cancer, osteosarcoma (OS) remains the most prevalent malignancy of the bone

occurred in children and adolescents [1]. OS is thought to derive from bone-forming mesen-

chymal cells [2]. The 5-year survival rate of OS with localized tumors is about 70%, while
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patients with metastatic OS have poor survival outcomes with 5-year survival rate of less than

30% [3]. The typically combined regimen of surgery and chemotherapeutic agents can control

numerous primary OS tumors effectively, but these therapies have limited effects in reining

the metastatic progression and recurrence after treatment [1, 4]. Molecularly targeted treat-

ment and immunotherapy targeting overexpressed proteins are in active clinical development

for OS [5]. Robust preclinical models and patient-derived organoids are under intensive explo-

ration for OS at present [5, 6]. Therefore, more innovative, and effective treatment options are

needed to improve the efficiency of OS therapy.

As a heterogeneous type of noncoding RNAs (ncRNAs), long ncRNAs (lncRNAs) exert

critical functions in various biological processes implicated in human diseases [7]. Particularly

in cancer, lncRNAs have established vital roles as tumor suppressors or oncogenic promoters

in almost all types of cancer [8]. Although lncRNAs are initially defined as RNA transcripts

without protein-coding potential, the development of the profiling of genome translation and

ribosome has uncovered that some lncRNAs harbor short open reading frames (sORFs) that

can interact with ribosomes and can be translated into small peptides [9, 10]. Recent docu-

ments have demonstrated the critical implication of lncRNA-encoded short peptides in cancer

biology [9]. LINC00665, an annotated lncRNA transcript, has been identified as a tumor driver

in various cancers [11]. In OS, LINC00665 operates as a sponge of certain miRNAs and thus

enhances cancer cell growth and metastasis [12, 13]. Intriguingly, recent reports have docu-

mented that lncRNA LINC00665 encodes a 52-amino acid (aa)-long short peptide CIP2A-BP

in triple-negative breast cancer and hepatocellular carcinoma, where the short peptide is capa-

ble of participating in cancer pathogenesis [14, 15]. However, the encoding potential of

lncRNA LINC00665 in OS has not yet been explored.

Aberrant activation of cAMP response element-binding protein 1 (CREB1), a crucial tran-

scriptional factor, has been reported to drive tumor progression in various cancers [16, 17],

including OS [18, 19]. Ribosomal protein S6 kinase A3 (RPS6KA3, RSK2) is a downstream

substrate of the ERK pathway and possesses a crucial function in the pathogenesis of OS [20,

21]. Importantly, RSK2 has been identified to phosphorylate and activate CREB1 [22], and the

RSK2/CREB pathway plays an essential role in OS progression [23].

Here, focusing on the encoding potential of lncRNA LINC00665, we first demonstrated

that lncRNA LINC00665 can encode an 18-aa-long short peptide (named LINC00665_18aa).

Consequently, we further investigated the biological effect and mechanism of LIN-

C00665_18aa on OS cell proliferation and migration.

Materials and methods

Bioinformatic analysis

To obtain the lncRNAs associated with ribosomes (count> 0) in OS cells, we utilized the

Ribosome sequencing (Ribo-Seq) dataset of U2OS cells from the Translatome database-Spe-

cies (http://www.translatomedb.net/searchspecies.html?sp=Human). The lncRNA-encoded

peptides matched with human proteome were eliminated using UniProt database (https://

www.uniprot.org/). The lncRNAs with encoding potential were retrieved from FuncPEP data-

base (https://bioinformatics.mdanderson.org/Supplements/FuncPEP/database.html). Using

DAVID database (https://david.ncifcrf.gov/home.jsp), we conducted Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The informa-

tion of all human transcriptional factors was downloaded from JASPAR database (https://

jaspar.genereg.net/). To analyze protein interaction networks, we used String database

(https://cn.string-db.org/). To observe the interaction relationships between CREB1 and other

proteins, we utilized Genemania online tool (http://genemania.org/).
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Cell lines

Human MNNG-HOS and U2OS OS cell lines were procured from Procell (Wuhan, China).

Cells were cultivated in Dulbecco’s modified Eagle medium (DMEM, Procell) medium in the

presence of fetal bovine serum (10% v/v, Procell) and penicillin/streptomycin (1%, Procell) in

a 5% CO2 atmosphere at 37˚C.

Plasmid and lentivirus constructs

The following expression constructs (Genecreate, Wuhan, China) were used: pcDNA3.1-Flag

tag vector-based expression plasmids encompassing the seven sORFs (shown in Fig 1A) and

negative control vec, LINC00665_18aa expression plasmid fused with green fluorescent pro-

tein (GFP) tag (LINC00665_18aa wt-GFP) and its mutation (LINC00665_18aa mut-GFP, in

which the start codon ATG of the LINC00665_18aa ORF was mutated to ATT), and the

mutant-type LINC00665_18aa expression plasmid fused with Flag tag (LINC00665_18aa mut-

Flag, in which the start codon ATG of the LINC00665_18aa ORF was mutated to ATT). The

CREB1-Luc luciferase reporter plasmid was based on the pGL3 vector and obtained from Gen-

ecreate. The pRL-TK Renilla control plasmid was purchased from Miaoling Bio (Wuhan,

China). The lentiviral particles expressing LINC00665_18aa and control particles were pur-

chased from Genecreate.

Transient transfection and lentivirus transduction

For plasmid transfection, the RFect Plasmid DNA Transfection Reagent was used as per the

manufacturing protocols (Baidai, Changzhou, China). Briefly, a mix of 1 μg plasmid construct

and 4 μL transfection reagent was prepared and then added into 1 × 105 MNNG-HOS or U2OS

cells. The transfected cells were harvested 24 h post-transfection for the subsequent assays.

For lentivirus transduction, 1 × 106 U2OS cells were infected with lentiviral particles at a

multiplicity of infection (MOI) of 10–20 in growth media containing polybrene in an 8 μg/mL

final concentration. After 48 h infection, puromycin (2 μg/mL) was added into the media, and

virus-positive cells were selected for 10–14 days.

Immunoblotting

Protein samples were extracted by lysing the transfected cells in 1× Radio immunoprecipita-

tion assay (RIPA) buffer (Beyotime, Shanghai, China) plus proteinase and phosphatase inhibi-

tors (Seivicebio, Wuhan, China) before electrophoresis through sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) gels. The resulting gels were electroblotted

onto nitrocellulose membranes (Millpore, Shanghai, China), and probing was conducted

using antibodies specific for Flag (1:10,000 dilution, Cat No.: 3064, Daian, Wuhan, China),

CREB1 (1:2000 dilution, Cat#12208-1-AP, Proteintech), phosphorylated CREB1 (P-CREB1,

1:1000 dilution, Cat#GB114322, Servicebio, Wuhan, China), RSK2 (1:3000 dilution,

Cat#23762-1-AP, Proteintech), and β-actin (1:10000 dilution, Cat#81115-1-RR, Proteintech).

The goat anti-rabbit IgG conjugated by horseradish peroxidase (1:5000 dilution,

Cat#SA00001-2, Proteintech) was employed as the secondary antibody. Protein signals were

developed using the enhanced chemiluminescence method (Beyotime). The β-actin served as a

loading buffer for normalization.

Cell counting Kit-8 (CCK-8) cell viability assay

For viability assays, the CCK-8 Kit was applied as described by the manufacturer (Beyotime).

Briefly, human MNNG-HOS and U2OS cells after transfections were plated at 3 × 103 cells per
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well in 96-well culture dishes. After 48 h culture, CCK-8 reagent was used in per well. Cell via-

bility was evaluated by gauging the optical density at 450 nm.

5-ethynyl-2’-deoxyuridine (EdU) cell proliferation assay

For proliferation assays, the Click-iT EdU-555 Cell Proliferation Kit (Servicebio) was used as

per the accompanying protocols. Briefly, human MNNG-HOS and U2OS cells after transfec-

tions (1.5 × 104 cells/well) were maintained in 24-well culture dishes for 48 h. EdU reagent

Fig 1. The lncRNA LINC00665 encodes a short peptide. (A) Immunoblotting analysis of the short peptides encoded by the indicated seven sORFs in

U2OS cells after transfection by the corresponding expression constructs. (B) CCK-8 assay showing the effects of three short peptides on cell viability.

(C) Diagram of the GFP fusion plasmids. (D) Representative GFP fluorescence images depicting the expression of the LINC00665_18aa-GFP fusion

protein in GFP fusion plasmids-transfected cells. (E) Immunoblots of the LINC00665_18aa-Flag fusion protein in Flag fusion constructs-transfected

cells. **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0286422.g001
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(10 μM) was administrated to culture media for 2 h to label proliferating cells. After being

washed by PBS and fixed in 4% paraformaldehyde, the cells were incubated with iF555 work-

ing solution for 30 min. Subsequently, the Hoechst 33342 solution was added into each well

for nuclear staining. Using fluorescence microscopy (Olympus, Beijing, China), the EdU posi-

tive cells (red) were scored relative to total nuclei (blue).

Transwell migration assay

For migration assays, human transfected MNNG-HOS and U2OS cells resuspending in

serum-free media were seeded at 2 × 104 cells per well into 24-transwell inserts. The inserts

were then placed into compete growth media, and cell migration was allowed for 24 h. The

cells that had migrated to the basal side of the membrane were quantified under an inverted

microscope at 100× magnification after crystal violet (0.1%, Servicebio) staining.

Immunofluorescence

Human MNNG-HOS and U2OS cells after transfections were maintained at 37˚C. After being

fixed in 4% paraformaldehyde, permeabilized with 0.5% Triton X-100 (Servicebio), and

blocked in 3% bovine serum albumin solution (BSA, Beyotime), the cells were probed with pri-

mary antibodies including anti-matrix metallopeptidase 9 (anti-MMP9, 1:1000 dilution,

Cat#GB11132, Servicebio), anti-proliferating cell nuclear antigen (anti-PCNA, 1:500 dilution,

Cat#GB11010, Servicebio), and anti-CREB1 (1:200 dilution, Cat#12208-1-AP, Proteintech).

Following the incubation with goat anti-rabbit IgG secondary antibody labeled by Alexa Fluor

488 (1:500 dilution, Cat#GB25303, Servicebio) or Cy3 (1:300 dilution, Cat#GB21303, Service-

bio), the cells were further incubated with 4’,6-diamidino-2-phenylindole (DAPI, Servicebio)

for nuclear staining. Images were acquired on the Olympus fluorescence microscope, and the

fluorescence intensity was analyzed ImageJ (National Institutes of Health, Bethesda, MA,

USA).

Mouse xenograft experiments

After approval by the Institutional Animal Care and Use Committee of the First Affiliated

Hospital of Zhengzhou University, ten BALB/c female athymic nude mice age-matched

between 5–7 weeks (GemPharmatech, Jiangsu, China) were grown in specific-pathogen-free

conditions and mouse xenograft studies were performed. For xenograft experiments, 5 × 106

human U2OS cells transduced with lentiviral particles (vec or LINC00665_18aa) were subcuta-

neously injected into the rump flanks of nude mice. After 35 days, mice were euthanized by

gradually increasing the concentration of CO2 in the anesthesia chamber. Xenograft tumors

were collected after mice were confirmed to have completely stopped breathing and heartbeat.

Each group included five mice. Sections (5 μm) of paraffin-embedded tumors were processed

for immunohistochemistry (IHC) as described before [24] using a primary antibody anti-

MMP9 (1:1000 dilution, Cat#GB11132, Servicebio), the anti-rabbit secondary antibody (1:300

dilution, Cat#GB23303, Servicebio) and the DAB Assay Kit (Beyotime). All methods were per-

formed in accordance with the relevant guidelines and regulations, and ARRIVE guidelines.

Immunoprecipitation (IP) and Co-Immunoprecipitation (CoIP)

For IP and CoIP assays, cell extracts were prepared from U2OS cells transfected with LIN-

C00665_18aa expression plasmid or vec control using RIPA buffer plus proteinase and phos-

phatase inhibitors. Total extractions were co-incubated with protein A/G agarose (Daian,

Wuhan, China) and relevant antibody including anti-Flag (1 μg, Cat#80010-1-RR,
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Proteintech), anti-CREB1 (1 μg, Cat#12208-1-AP, Proteintech), or isotype anti-IgG antibody

(1 μg, Cat#30000-0-AP, Proteintech) overnight at 4˚C. Beads were collected, and the co-pre-

cipitated proteins were harvested for qualitative proteome profiling analysis or

immunoblotting.

Qualitative proteome profiling analysis

The qualitative proteome analysis of the precipitated proteins in IP experiments was per-

formed by Qinglianbio Biotechnology Co., Ltd. (Beijing, China) using RIGOL L-3000 HPLC

System (RIGOL, Beijing, China) with Proteome Discoverer2.4 software.

Dual-luciferase reporter assay

The effect of LINC00665_18aa on CREB1 transcriptional activity was evaluated by luciferase

assays by co-transfecting the CREB1-Luc luciferase reporter plasmid, pRL-TK Renilla control

plasmid (for normalization), and LINC00665_18aa expression plasmid or vec control into

U2OS cells. The cells were collected 24 h post-transfection and assayed for luciferase activity

using Dual-Luciferase Assay Kit (MedChemExpress, Shanghai, China).

Statistical analysis

Unless otherwise indicated, mean ± SD values from at least 3 independent replicates were

reported in the graphs. For pairwise comparisons, we utilized a two-tailed Student’s t-test. For

three or more matched groups, we used analysis of variance (ANOVA) followed by a post hoc
Tukey’s test. Significance for all experiments, evaluated by calculating P value, was <0.05.

Results

Screen and identification of LINC00665_18aa

To explore the implication of lncRNA-encoded small peptides in OS development, we firstly

utilized the Ribo-Seq dataset of human OS cell line U2OS to obtain the lncRNAs associated

with ribosomes (count> 0) and selected the longest transcripts. Secondly, using UniProt data-

base (https://www.uniprot.org/) to predict the putative proteins encoded by these lncRNA tran-

scripts, we excluded the peptides matched with human proteome and selected the unmatched

peptides (S1 Table). Finally, by combining these unmatched peptides and the lncRNAs that

have been identified to have encoding potential in FuncPEP database (https://bioinformatics.

mdanderson.org/Supplements/FuncPEP/database.html), a total of seven putative short peptides

were obtained (S2 Table). To confirm the finding, we cloned the corresponding sORFs into the

Flag tag fusion pcDNA plasmid and evaluated their expression in human U2OS OS cells.

Through an immunoblotting method using anti-Flag antibody, three peptides (CRNDE_35aa,

CRNDE_71aa and LINC00665_18aa) were validated to express in U2OS cells (Fig 1A). Inter-

estingly, CCK-8 assays revealed that only short peptide LINC00665_18aa encoded by ORF

LINC00665_25 significantly suppressed the viability of human MNNG-HOS and U2OS OS

cells (Fig 1B). We therefore focused on LINC00665_18aa in this study.

To examine if the start codon of the LINC00665_18aa ORF is active, we constructed two

expression plasmids (LINC00665_18aa wt-GFP and LINC00665_18aa mut-GFP) in which the

GFP ORF was fused to the C-terminus of the LINC00665_18aa ORF (Fig 1C) and transfected

them into human MNNG-HOS and U2OS OS cells. As illustrated in Fig 1D, the LIN-

C00665_18aa-GFP fusion protein was detected in LINC00665_18aa wt-GFP-transfected OS

cells. The mutation (LINC00665_18aa mut-GFP), in which the start codon ATG of the LIN-

C00665_18aa ORF was mutated to ATT (Fig 1C), abolished the expression of the
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LINC00665_18aa-GFP fusion protein (Fig 1D). To eliminate the influence of the GFP tag on

protein phenotype, we generated two constructs (LINC00665_18aa wt-Flag and LIN-

C00665_18aa mut-Flag) in which three Flag tags were fused to the C-terminus of the LIN-

C00665_18aa ORF. Consistent with the results of the GFP fusion protein, the

LINC00665_18aa-Flag fusion protein was observed in LINC00665_18aa wt-Flag-transfected

cells, but not LINC00665_18aa mut-Flag-introduced cells (Fig 1E). Thus, we used the wild-

type Flag tag fusion plasmid LINC00665_18aa wt-Flag in the subsequent experiments.

LINC00665_18aa suppresses OS cell proliferation and migration in vitro
Having demonstrated the suppressive effect of LINC00665_18aa on cell viability, we further

examined its influence on cell proliferation and migration. The LINC00665_18aa wt-Flag plas-

mid was used to elevate LINC00665_18aa expression in human MNNG-HOS and U2OS OS

cells. Elevated expression of LINC00665_18aa impeded cell proliferation compared with the

control group, as evidenced by the decrease of the number of the EdU positive cells (Fig 2A).

Moreover, LINC00665_18aa elevation markedly reduced the expression of proliferating

marker PCNA (Fig 2B), confirming the inhibitory effect of LINC00665_18aa on cell prolifera-

tion. We then used transwell assays to evaluate the effect on cell migration. Human

MNNG-HOS and U2OS OS cells expressing LINC00665_18aa exhibited suppressed motility

rates compared with the controls (Fig 2C). Additionally, elevated LINC00665_18aa expression

reduced the level of migration-related protein MMP9 (Fig 2D), demonstrating the repression

of LINC00665_18aa on cell migration. The data establish that LINC00665_18aa exerts inhibi-

tory functions on OS cell proliferation and migration in vitro.

LINC00665_18aa diminishes tumor growth in vivo
To elucidate whether LINC00665_18aa possesses tumor-inhibitory activity in vivo, we con-

ducted xenograft tumor experiments: human U2OS OS cells transduced with lentivirus

expressing LINC00665_18aa or a mock control were implanted into BALB/c nude mice by

subcutaneous injection. LINC00665_18aa lentivirus-transduced U2OS cells produced remark-

ably smaller tumors than the same cells transduced with the vec control (Fig 3A–3C). IHC

examination of tumor sections showed that LINC00665_18aa expressing tumors had markedly

fewer cells stained for MMP9 staining than the controls (Fig 3D). These findings confirm our

hypothesis that LINC00665_18aa can impede tumor growth in vivo.

LINC00665_18aa inactivates CREB1, a transcription factor

To identify the mechanism by which LINC00665_18aa exerts tumor-inhibitory functions in

OS, we performed qualitative proteome profiling analysis after IP experiments: firstly, human

U2OS OS cells expressing LINC00665_18aa were lysed and incubated with the anti-Flag anti-

body, followed by the acquisition of the precipitated proteins from the immunoprecipitates;

secondly, the precipitated proteins were conducted with qualitative proteome profiling analy-

sis using HPLC-MS/MS methods. Because LINC00665_18aa expression plasmid was con-

structed by using the Flag tag fusion plasmid, the existence of LINC00665_18aa in the

precipitated proteins was confirmed by immunoblotting with anti-Flag antibody (Fig 4A).

Using the qualitative proteome analysis of isotype IgG antibody to rule out protein impurity, a

total of 741 unique proteins were pulled down in the anti-Flag antibody group (Fig 4B, S3

Table). We then performed GO enrichment analysis and KEGG pathway enrichment analysis

of the 741 unique proteins using DAVID database. Results showed that the 741 precipitated

proteins were closely associated with RNA binding (Fig 4C), and the RNA transport pathway

was predicted as the most prominent enriched pathway (Fig 4D). By combining the 1665 all
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Fig 2. Elevated expression of LINC00665_18aa hinders the proliferation and migration of MNNG-HOS and U2OS cells in vitro.

(A-D) MNNG-HOS and U2OS OS cells were introduced with constructs expressing LINC00665_18aa or vec controls. (A) Representative

images showing a cell proliferation assay performed by EdU assay with transfected cells. (B) PCNA expression in transfected cells by using

an anti-PCNA antibody and measuring its fluorescence intensity. (C) Representative transwell pictures depicting a cell migration assay.

(D) Representative fluorescence images of MMP9 in transfected cells using an anti-MMP9 antibody. *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0286422.g002

PLOS ONE The short peptide LINC00665_18aa suppresses OS progression

PLOS ONE | https://doi.org/10.1371/journal.pone.0286422 June 7, 2023 8 / 16

https://doi.org/10.1371/journal.pone.0286422.g002
https://doi.org/10.1371/journal.pone.0286422


human transcriptional factors from JASPAR database (https://jaspar.genereg.net/) and the 741

proteins, a total of 33 transcriptional factors were found to be associated with LIN-

C00665_18aa (Fig 4B, S4 Table).

CREB1 is a critical transcriptional factor that exerts an important function in normal devel-

opment and human disease [16, 25]. More importantly, CREB1 operates as a potent tumor

driver in OS [18, 19, 26]. We therefore focused on CREB1 in this study and hypothesized that

LINC00665_18aa might regulate CREB1 activation in OS cells. To confirm this, we evaluated

whether LINC00665_18aa impacts the transcriptional activity, nuclear localization, and phos-

phorylation of CREB1. Luciferase assays revealed that increased expression of LIN-

C00665_18aa upon construct transfection led to a strong repression of luciferase activity of the

CREB1-Luc luciferase reporter plasmid, demonstrating that LINC00665_18aa repressed the

transcriptional activity of CREB1 (Fig 4E). Immunoblotting results showed that increased

expression of LINC00665_18aa reduced P-CREB1 level in human U2OS OS cells compared

with the control group, indicating that LINC00665_18aa weakened the phosphorylation of

CREB1 (Fig 4F). Furthermore, LINC00665_18aa hindered the nuclear localization of CREB1,

as evidenced by the reduction of CREB1 fluorescence intensity in the nucleus of human

MNNG-HOS and U2OS OS cells (Fig 4G). All these findings together support the notion that

LINC00665_18aa targets CREB1 and represses its activity.

LINC00665_18aa weakens the interaction of CREB1 and RSK2

Further, we analyzed the interaction network of the 741 precipitated proteins pulled down by

LINC00665_18aa using String database (https://cn.string-db.org/). Intriguingly, we found that

Fig 3. LINC00665_18aa attenuates tumor growth in vivo. (A-C) Tumor volume (A), tumor images (B), and the mean weight (C) of xenograft tumors

at day 35 (n = 5 per group) derived from subcutaneous injection into the BALB/c nude mice of U2OS cells transduced with lentivirus expressing

LINC00665_18aa or a mock control. (D) Representative pictures showing MMP9 staining of sections from LINC00665_18aa lentivirus or vec control

xenografts at day 35. **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0286422.g003
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CREB1 can interact with 22 proteins (Fig 5A, S5 Table). Using Genemania tool (http://

genemania.org/) to analyze the interaction relationships between CREB1 and the 22 proteins,

we found that CREB1 and RSK2 have a variety of interaction relationships, such as co-localiza-

tion and co-expression (Fig 5A). CREB1 can associate with RSK2 and thus modulates several

important signaling pathways [27] and plays a significant role in OS development [23]. To

explore whether LINC00665_18aa can influence the interaction between CREB1 and RSK2,

we performed CoIP experiments: human U2OS OS cells transfected with LINC00665_18aa

expression plasmid or vec control were lysed and incubated with an anti-CREB1 antibody, fol-

lowed by the detection of the precipitated proteins by immunoblotting. Compared with the

vec control (gray value of RSK2: CREB1 = 1.09), LINC00665_18aa impaired the interaction of

CREB1 and RSK2 (gray value of RSK2: CREB1 = 0.52) (Fig 5B).

Elevated expression of CREB1 reverses the inhibitory effects of

LINC00665_18aa on OS cell proliferation and migration

To directly determine whether the inhibitory effects of LINC00665_18aa are due to the inacti-

vation of CREB1, we performed a rescue experiment by introducing CREB1 expression

Fig 4. LINC00665_18aa represses the activity of CREB1 in OS cells. (A) IP experiments using an anti-Flag antibody with total extractions of U2OS

cells transfected with LINC00665_18aa expression plasmid. Also, immunoblotting analysis of the precipitated proteins in IP experiments using an anti-

Flag or anti-IgG antibody. (B) Venn diagram showing the 33 transcriptional factors associated with LINC00665_18aa in U2OS cells. (C and D) The

bubble plot showing the top 10 enriched cellular components (C) and the top 10 most enriched KEGG pathways (D) of the precipitated proteins in IP

experiments. (E) U2OS cells were co-transfected with the CREB1-Luc luciferase reporter plasmid, pRL-TK Renilla control plasmid and

LINC00665_18aa expression plasmid or vec control, followed by the measurement of the luciferase activity. (F) Immunoblotting of P-CREB1 in U2OS

cells after transfection by LINC00665_18aa expression plasmid or vec control. (G) Representative fluorescence images of CREB1 in the nucleus of

MNNG-HOS and U2OS cells after transfection by LINC00665_18aa expression plasmid or vec control using an anti-CREB1 antibody. *P<0.05,

**P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0286422.g004
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construct into LINC00665_18aa-expressing human OS cells. Increased expression of CREB1

in human MNNG-HOS and U2OS OS cells rescued LINC00665_18aa-driven cell viability and

proliferation defects (Fig 6A and 6B). Through fluorescence intensity analysis, LIN-

C00665_18aa and CREB1 co-expressing cells showed a clear augmentation of PCNA expression

compared with the LINC00665_18aa controls (Fig 6C). Moreover, CREB1 increase significantly

abrogated LINC00665_18aa-imposed suppression of migration of human MNNG-HOS and

U2OS OS cells (Fig 6D). Together, these results suggest that LINC00665_18aa exerts inhibitory

effects on cell proliferation and migration, at least in part, through CREB1.

Discussion

Although lncRNAs were initially defined as ncRNAs, a number of lncRNAs have recently been

demonstrated to actually associate with ribosomes and contain sORFs that can be translated

into short peptides [28]. The demonstration of functionally lncRNA-encoded short peptides in

cancer biology suggests that these lncRNAs might possess dual roles, with both RNA and pep-

tides, in carcinogenesis [9]. For example, a small peptide ASRPS with 60-aa encoded by

LINC00908 functions as a potent anti-tumor polypeptide in triple-negative breast cancer by

modulating STAT3 activity [29]. The LINC00998-encoded short peptide SMIM30 can

enhance the tumorigenesis of hepatocellular carcinoma through the regulation of the SRC/

YES1/MAPK pathway [30]. Moreover, a short 130-aa peptide SRSP encoded by LOC90024

contributes to colorectal cancer development by promoting the binding of SRSF3 to Sp4 tran-

scription factor [31].

Previous reports have provided evidence that LINC00665, an originally annotated as a

lncRNA transcript, operates as a tumor promoter in OS by working as a sponge of certain

miRNAs [12, 13]. In the current work, we discover, for the first time, that lncRNA LINC00665

can encode an 18-aa-long short peptide LINC00665_18aa in human OS cells. Contrary to the

function of its maternal lncRNA LINC00665, LINC00665_18aa acts as a novel suppressor of

OS cell proliferation and motility in vitro and tumor growth in vivo. These above results are

also supported by the expression alteration of PCNA and MMP9 in OS cells because PCNA is

an essential factor in DNA metabolism and replication and a well-known cell proliferation

Fig 5. LINC00665_18aa diminishes the interaction of CREB1 and RSK2. (A) Schematic diagram showing a part of interaction network of these

precipitated proteins pulled down by LINC00665_18aa. (B) U2OS cells transfected with LINC00665_18aa expression plasmid or vec control were lysed

and incubated with an anti-CREB1 antibody. The precipitated proteins were detected by immunoblotting using an anti-CREB1 or anti-RSK2 antibody.

https://doi.org/10.1371/journal.pone.0286422.g005
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Fig 6. LINC00665_18aa-mediated regulation of CREB1 impacts cell proliferation and migration. (A-D) MNNG-HOS and U2OS OS cells were

introduced with or without vec control, LINC00665_18aa expression plasmid, or constructs expressing LINC00665_18aa and CREB1. (A) Cell viability

by CCK-8 assay performed with cells transfected as indicated. (B) Representative images showing a cell proliferation assay performed by EdU assay with

cells transfected as indicated. (C) Representative fluorescence images of PCNA in transfected cells using an anti-PCNA antibody. (D) Representative

transwell pictures depicting a cell migration assay performed with cells transfected as indicated. *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0286422.g006
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marker [32], and MMP9 expression is closely associated with OS cell metastasis [33]. Consis-

tent with our findings, although lncRNA LINC00665 has been reported to exert a promoting

effect on the progression of breast cancer [34, 35], its 52-aa peptide CIP2A-BP functions as an

anti-tumor factor in TNBC via the PP2A/PI3K/AKT/NF-κB pathway by binding the oncogene

CIP2A [14]. However, Li et al. found that both lncRNA LINC00665 and its short peptide

CIP2A-BP promoted HCC development through the enhancement of cancer cell growth and

motility [15]. These data suggest that lncRNA LINC00665 can encode different short peptides

in different types of cancer cells, and the effect of short peptides may be inconsistent with that

of the maternal lncRNAs.

Using qualitative proteome analysis after IP experiments with anti-Flag antibody, we found

many proteins bound to LINC00665_18aa and selected transcription factor CREB1 for further

exploration in this study. Numerous studies have established the promoting role of CREB1 in

the carcinogenesis of multiple cancers, such as liver cancer, colorectal cancer, and prostate

cancer [36–38]. In OS, activation of CREB1 is crucial for cancer initiation and maintenance

[26]. Moreover, lncRNA ELFN1-AS1 and UCA1 up-regulate CREB1 expression to contribute

to OS progression by sponging certain miRNAs [18, 19]. However, no studies proved whether

CREB1 can be regulated by lncRNA-encoded peptides. In the current study, LINC00665_18aa

is demonstrated to suppress the activation of CREB1 in human U2OS cells. Furthermore, our

findings confirm that LINC00665_18aa exerts inhibitory effects on OS cell proliferation and

migration, partly through CREB1.

RSK2 is a strong oncogene in OS [20, 21] and can activate CREB1 [22]. The association and

interaction between RSK2 and CREB1 can modulate several signaling pathways, including the

toll and NF-κB pathways, in multiple myeloma cells [27]. Moreover, the activation of the

RSK2/CREB1 pathway is associated with multiple myeloma development by affecting cancer

cell growth and survival [39]. Additionally, the RSK2/CREB signaling pathway can promote

the progression of various cancers [40], including OS [23]. In the current report, bioinformat-

ics data showed the co-localization and co-expression of CREB1 and RSK2. Importantly, CoIP

experiments validated that LINC00665_18aa impairs the interaction between CREB1 and

RSK2 in OS cells.

With these findings, we envision that the lncRNA-encoded short peptide LINC00665_18aa

has the potential to develop novel therapies against OS. However, there are still several limita-

tions in the current research. When we predicted the lncRNAs with encoding potential in

U2OS OS cells, we selected their longest transcripts. The selection method is limited and may

miss other transcripts with sORFs and encoding potential. There is no doubt that how to pre-

dict the coding potential of lncRNA more effectively is still a challenge for the further investi-

gations. Additionally, the in vivo assays revealed the inhibitory impact of LINC00665_18aa on

xenograft tumor growth, which is lacking the evidence about the involvement of CREB1/RSK2

interaction in the regulation of LINC00665_18aa. Further in vivo studies about the novel

mechanism are warranted in future work. Although our study demonstrates the tumor-inhibi-

tory function of LINC00665_18aa, its safety and long-term efficacy in various experimental

models should be further determined.

Conclusion

Our study shows that lncRNA LINC00665 can encode an 18-aa-long short peptide LIN-

C00665_18aa. The short peptide diminishes OS cell proliferation and migration by repressing

the transcriptional activity of CERB1 and impairing the interaction between CREB1 and RSK2.

These findings broaden the diversity and breadth of lncRNAs in human carcinogenesis and pro-

vide a new basis for cancer therapeutics through the functions of the short encoding peptides.
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